

EnCo Software – Project C-SOX

Outline

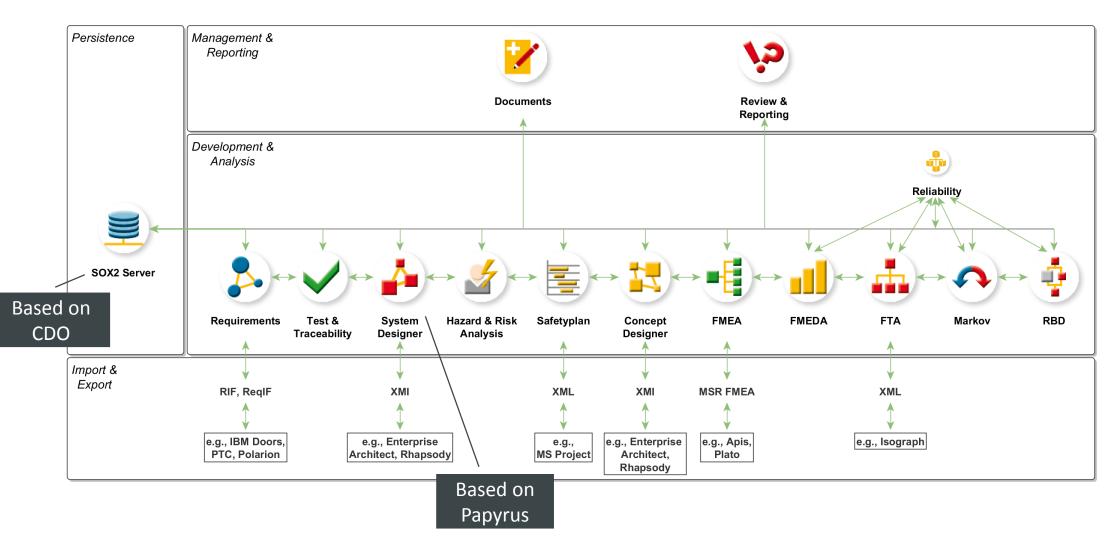
- 1. Introduction EnCo & SOX2
- 2. Project C-SOX

Introduction EnCo & SOX2

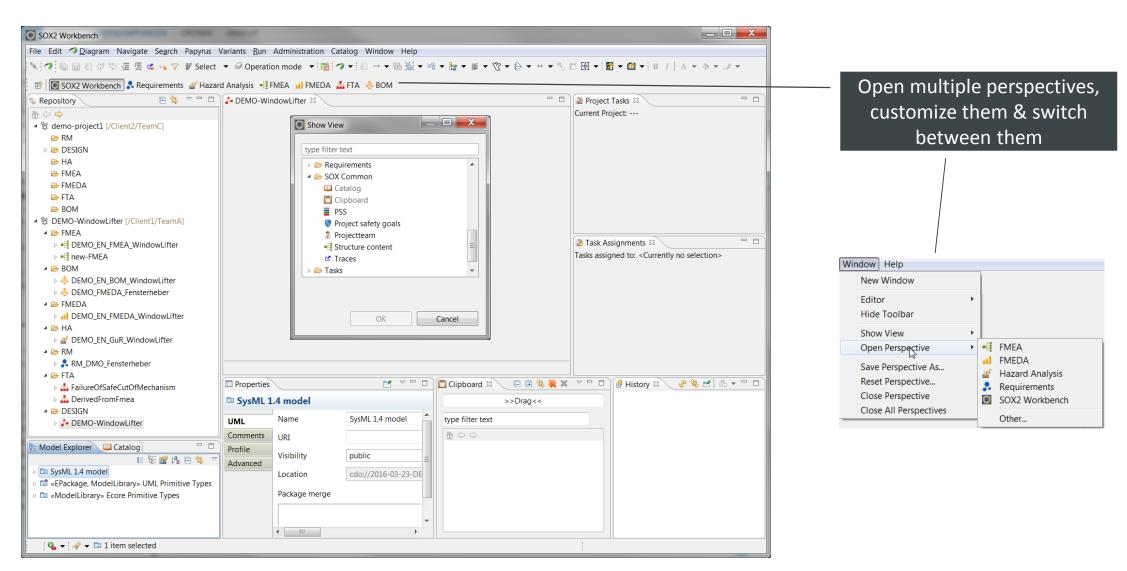
EnCo Software GmbH

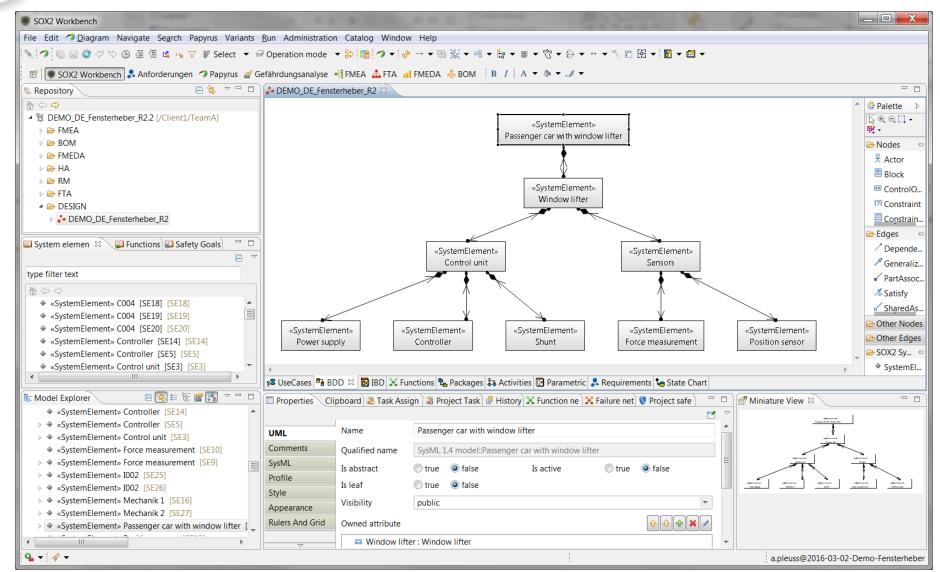
 \bigcirc

- Founded in 2007; now based in Munich, Germany
- Training, consulting and operational support in functional safety (ISO 26262)
- Since 2009: Focus on development of tool suite *Safety Office X2* (*SOX2*) for functional safety
- Resellers: China, Japan, Korea
- Research projects:
 - InTelekt: Safety & reliability of power electronics in electric vehicles, national funding (BMBF)

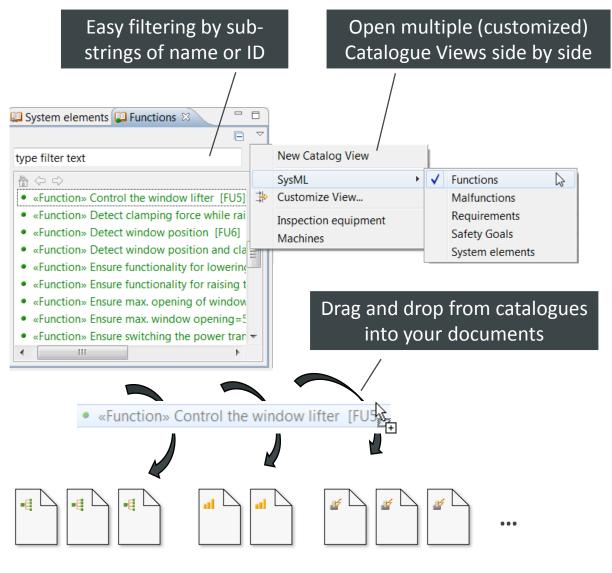


- *qSafe*: Semi-automated generation of safety analyses, national funding (BMWi)
 Impute: Semi-automated generation Set State Set Semi-automated generation Set State Set Semi-automated generation Set State
- Customers & partnerships:


SOX2 - Modules

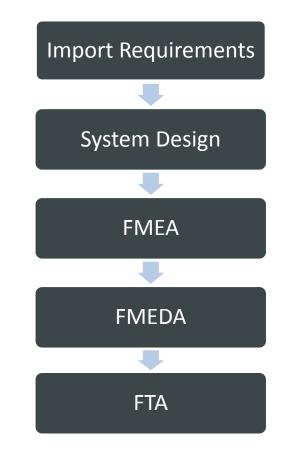

SOX2: Initial Workbench

System Designer (SD) – Overview



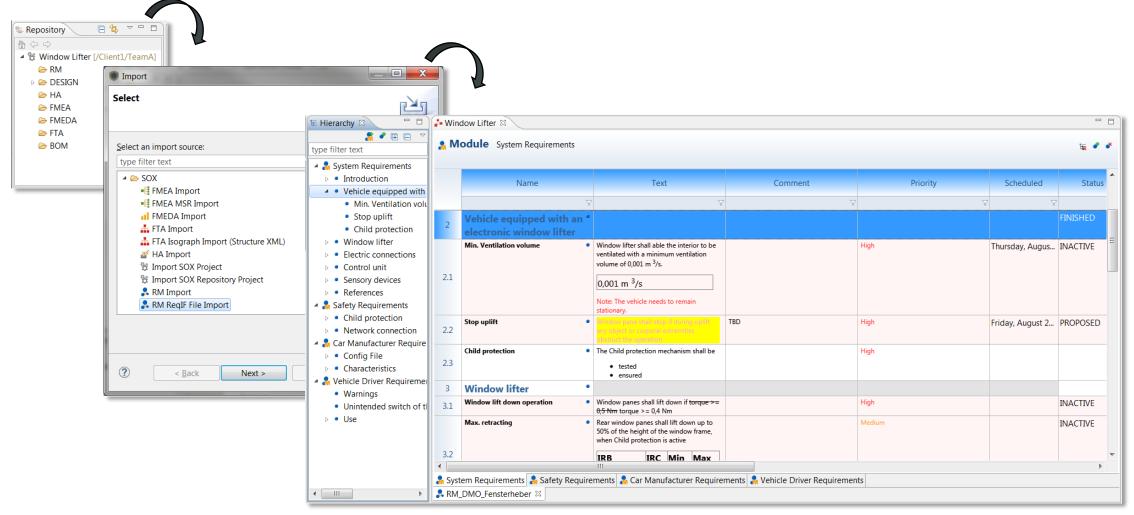
C-SOX

Module Integration: Catalogues



- Elements relevant in multiple modules can be re-used project-wide
- Re-use "by reference", i.e., changes at one place are reflected project-wide (toolsupported consistency)
- Catalogue View provides list of all available elements of a certain type
- Catalogue View available for:
 - System Elements
 - Functions (and subtypes such as Diagnoses)
 - Malfunctions
 - Safety Goals
 - Requirements
 - Inspection equipment, Machines (for Process FMEAs)
 - Project Tasks and Team Members (displayed in specific views)

Example Case with SOX2



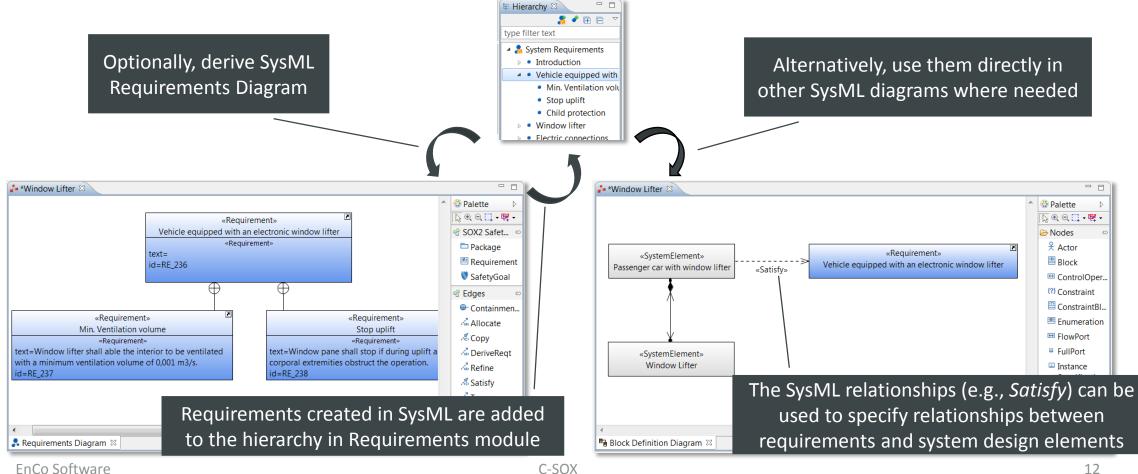
¹ except BOM and FMEDA

Requirements: Create or Import Requirements

Requirements: Safety Goals

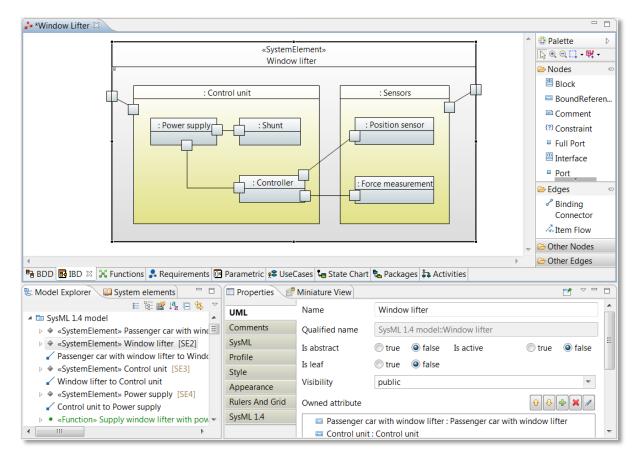
• Define Safety Goals

New safety g	goal	X	1								
New safety goal			V Project safety goals								
			Name	current (M)	Safe State	Coverage E					
Name	Ensure the "safe cut off mechanism" to prevent clamping of limbs		🗍 🛡 Ensure the "safe cut off mechanism" to pre	ASILB				100 % (ASII			
Safe State	Open		🗌 🛡 Ensure the child protection (max. window -	ASILC				100 % (ASII			
EOT		>	Ensure ventilation	QM				100 % (QM)			
FTT											


• Optionally, a Hazard and Risk Analysis can be performed to derive the safety goals

	ck Related	natingo													
type f	ilter text														
Nr	Priority	Status	Function	Malfunction	Combin	Effect	Hazard	S (Severi	Durat	Frequ	E (Expos	C (Contr	ASIL	Safety Goal	Safe state
⊿ No	t grouped														
1	*	OPEN	Raising the window	Raising the window	Driving o	Only loss	Non-hazardous loss	S0 - No i			E4 - High	C0 - Cont	QM		
2	*	OPEN	Raising the window	Raising the window	Driving o	Only loss	Non-hazardous loss	S0 - No i			E4 - High	C1 - Sim	QM		
3	*	OPEN	Raising the window	Raising the window	Driving i	Only loss	Non-hazardous loss	S0 - No i			E4 - High	C0 - Cont	QM		
4	*	OPEN	Raising the window	Raising the window	Car at ser	Only loss	Non-hazardous loss	S0 - No i			E2 - Low	C0 - Cont	QM		
5	*	OPEN	Raising the window	Raising the window	Parking	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C0 - Cont	QM		
6	*	OPEN	Raising the window	Raising the window	Driving o	Clamped	Damage to persons*	S1 - Light			E4 - High	C3 - Diffi	ASILB	Ensure the "safe cut	
7	*	OPEN	Raising the window	Raising the window	Driving o	Clamped	Damage to persons*	S1 - Light			E4 - High	C3 - Diffi	ASILB	Ensure the "safe cut	
8	*	OPEN	Raising the window	Raising the window	Driving i	Clamped	Damage to persons•	S2 - Seve			E4 - High	C2 - Nor	ASILB	Ensure the "safe cut	
9	*	OPEN	Raising the window	Raising the window	Car at ser	Only ligh	Damage to persons*	S0 - No i			E2 - Low	C2 - Nor	QM		
10	*	OPEN	Raising the window	Raising the window	Parking	Clamped	Damage to persons*	S2 - Seve			E3 - Med	C2 - Nor	ASILA	Ensure the "safe cut	
11	*	OPEN	Lowering the window	Lowering the windo	Driving o	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C1 - Sim	QM		
12	*	OPEN	Lowering the window	Lowering the windo	Driving o	Only loss	Non-hazardous loss	S0 - No i			E4 - High	C1 - Sim	QM		
13	*	OPEN	Lowering the window	Lowering the windo	Driving i	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C0 - Cont	QM		
14	*		Lowering the window								E2 - Low				
15	*	OPEN	Lowering the window	Lowering the windo	Parking	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C0 - Cont	QM		
16	*	OPEN	Lowering the window	Lowering the windo	Driving o	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C0 - Cont	QM		
17	*	OPEN	Lowering the window	Lowering the windo	Driving o	Only loss	Non-hazardous loss	S0 - No i			E4 - High	C0 - Cont	QM		
18	*	OPEN	Lowering the window	Lowering the windo	Driving i	Only loss	Non-hazardous loss	S0 - No i			E3 - Med	C0 - Cont	QM		
•	- <u>-</u>						I								

System Design: Requirements

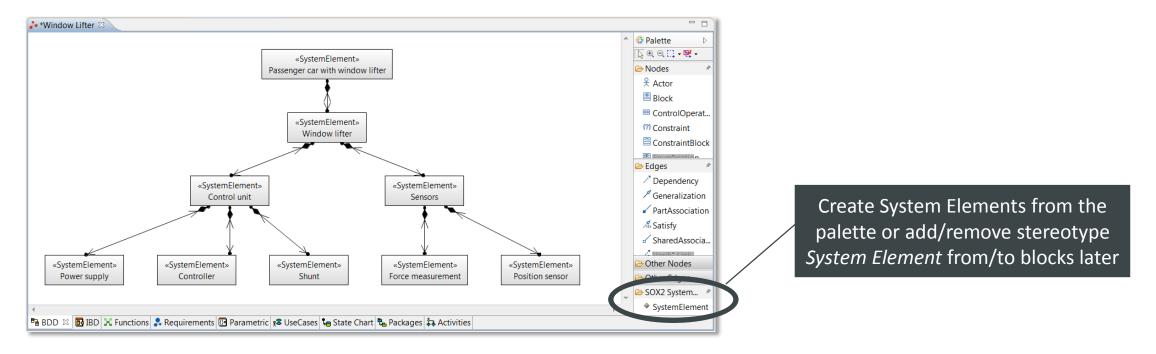

- Requirements in Requirements module can be directly used in SysML via drag and drop
- Vice versa, changes and newly created Requirements from SysML are reflected in Requirements module

System Design: SysML diagrams

- Create your system design with SysML according to the needs of your project
- Comprehensive support of the SysML and UML standard

System Design: Stereotypes

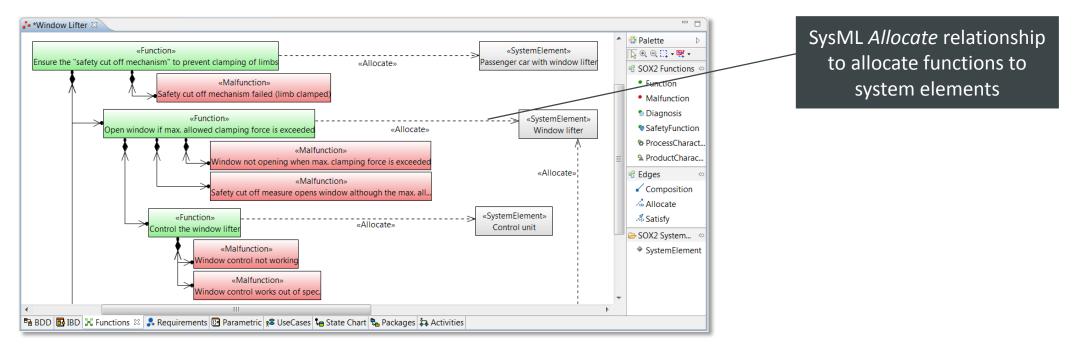
- Use specific stereotypes to mark elements to be considered for safety analysis:
 - System element: Extension of a SysML block
 - *Function*: Extension of a SysML block
 - *Malfunction*: Extension of a SysML block
 - Safety Goal: Extension of a SysML Requirement


«SystemElement» Passenger car with window lifter	
«Function»	
Ventilate Passenger Car	
«Malfunction»	
Passenger car not ventilated	
«SafetyGoal»	
Ensure the child protection (max. wi	ndow opening
«SafetyGoal»	
safetyNorm=ISO26262_ASIL	

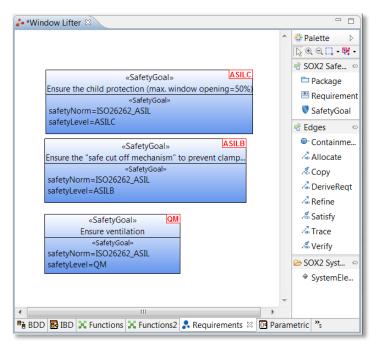
ASILC = 50%)

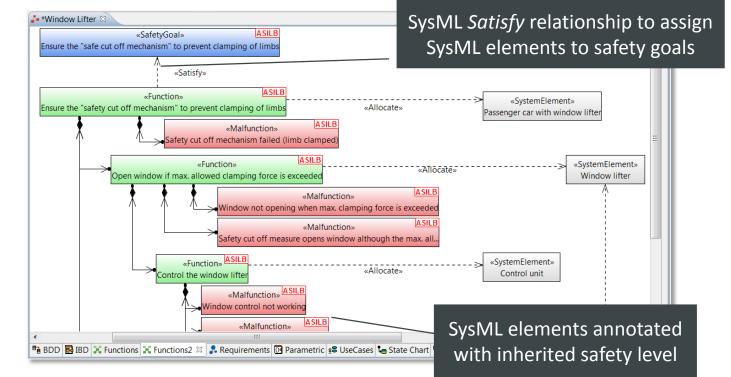
• Additional stereotypes for specific sub-types of functions: Diagnosis, Safety Function, Process Characteristics, Product Characteristics

System Design: Hierarchy of System Elements


- SysML blocks that should be considered for the safety analysis as system elements are marked with the stereotype *SystemElement*
- The hierarchy of system elements is defined in a Block Definition Diagram (BDD) as usual in SysML

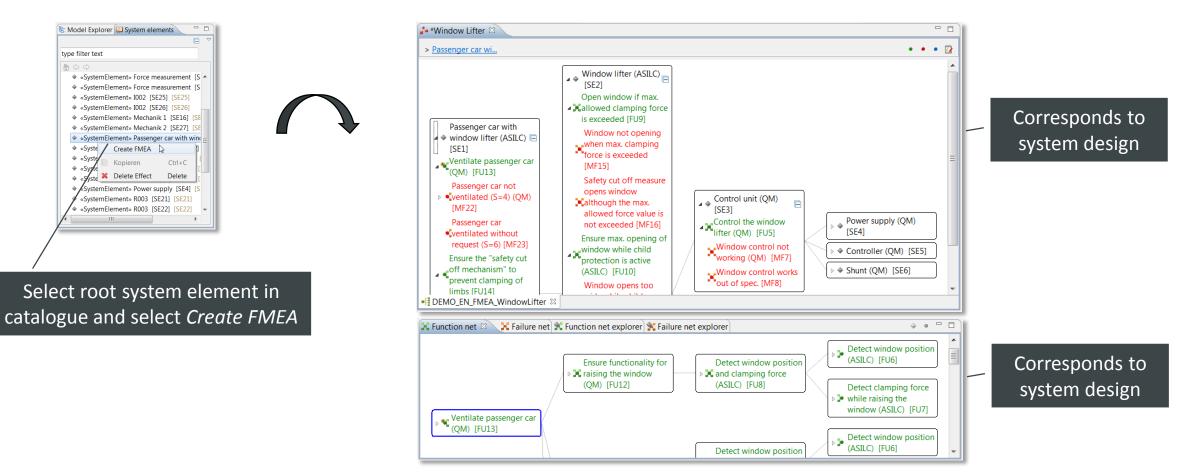
System Design: Hierarchy of Functions


- Functions are marked with stereotype *Function*
- Hierarchy of functions is specified as a functions tree in a SysML Block Definition Diagram
- Possibility to specify and assign malfunctions directly in the system design

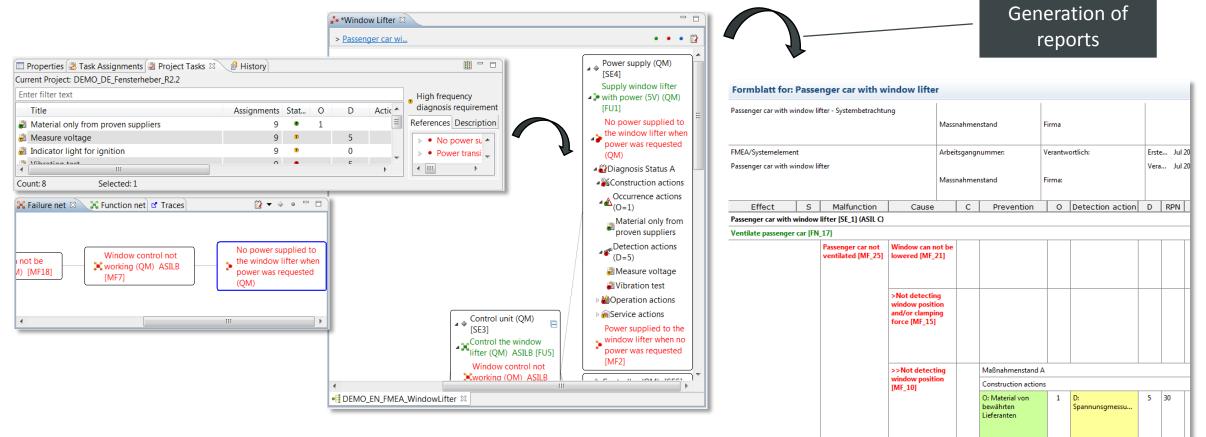


System Design: Safety Goals

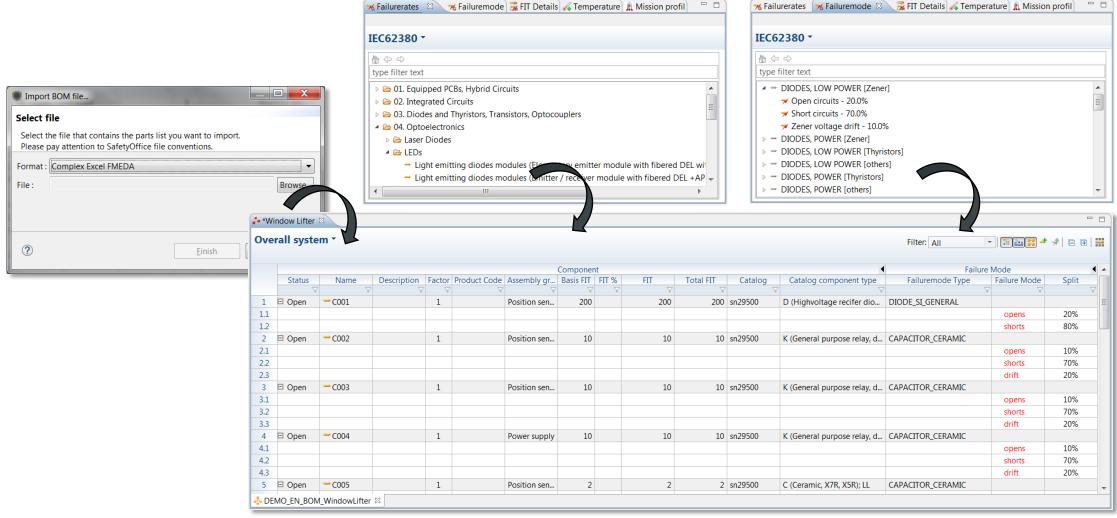
- All Safety Goals are available in the system design and can also be edited, created and assigned to system elements within the system design
- Assignment of Safety Goals to Malfunctions is represented in SysML via SysML Satisfy relationship
- Safety Classifications are calculated for all elements directly or indirectly related to a safety goal and can be displayed within SysML diagrams



FMEA: Derive FMEA from System Design


- The structure of an FMEA can be automatically derived from system design
- Irrelevant elements from system design can be omitted

FMEA: Finalize FMEA


- Complete the FMEA (define failure net, define actions, etc.)
- Changes/additions to system elements, functions, malfunctions can be specified directly within the FMEA and are propagated back to system design

BOM: Create or Import BOM

• Import a BOM or create one using the built-in failure rate catalogues and failure mode catalogues

FMEDA: Create FMEDA from BOM

FMC Single FMC Mult... Thres

50%

Diagnoses type filter text

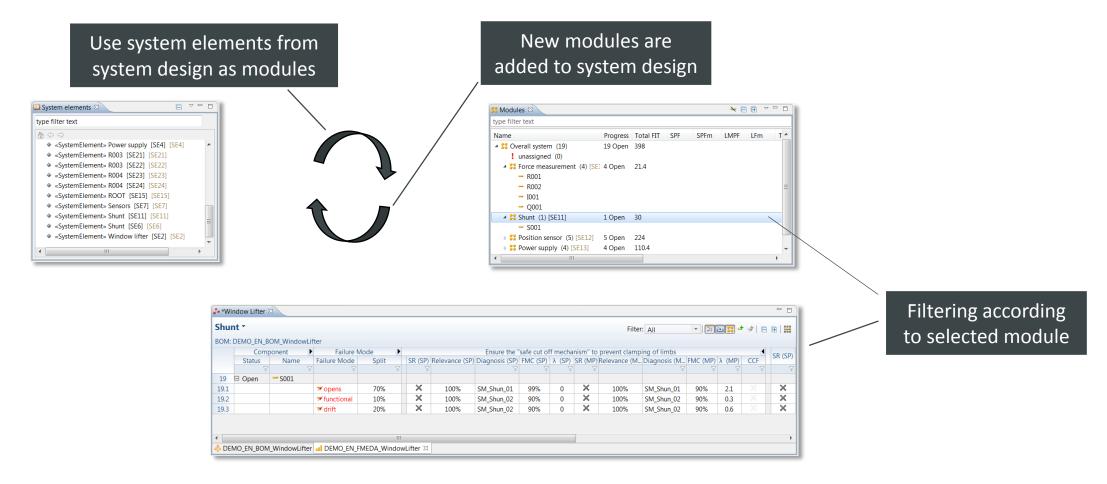
SM-Controller
 Startup Test

Name

Code

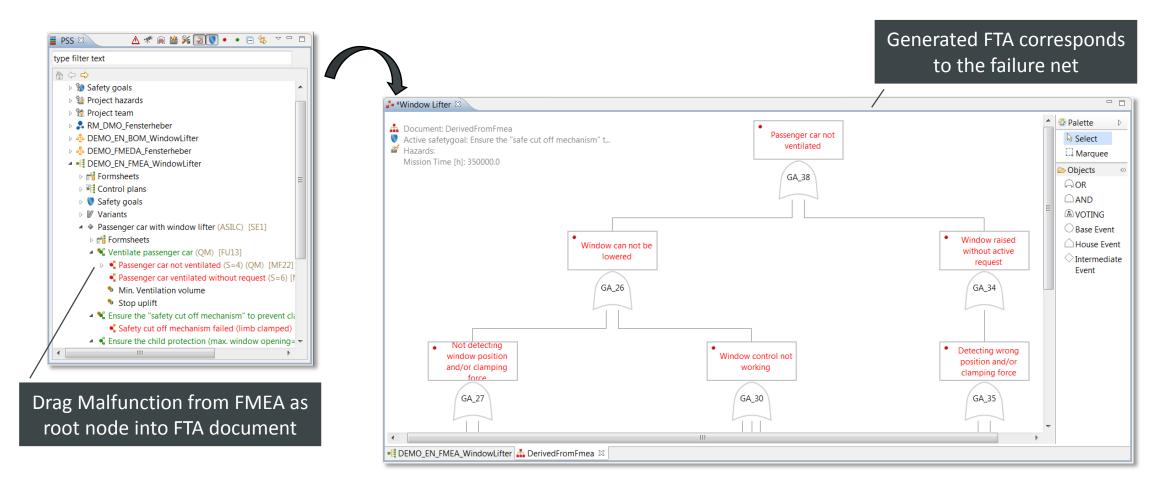
SM Rege 01

50%

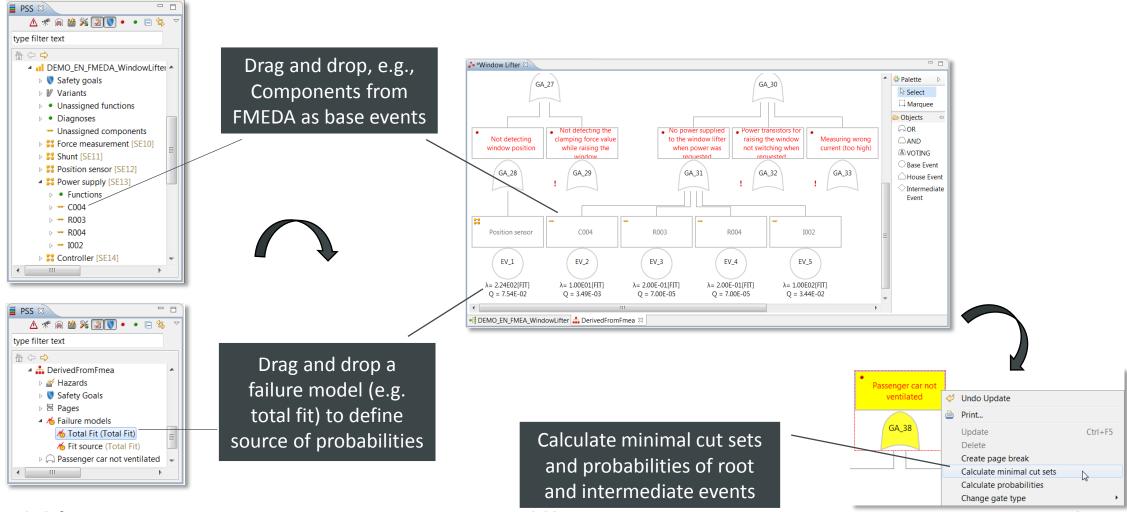

- Safety goals can be taken from the project safety goals / system design
- Diagnoses are considered as specific functions and, hence
 - Can be taken from catalogue
 - Newly added diagnoses are added to the system design and the catalogue

															untup rest		n_nege_o.	1 5070	5070
														🔺 🔏 SM-F	orce mea	surement	t		
Project safety goals														• P	lausibilisa	tion SI	M_KrSe_02	2 90%	99%
Name	Safet	current ci	urrent (M) S	afe State Covera										• in	nternal self	-test SI	M_KrSe_0:	1 99%	90%
Ensure the "safe cut off mechanism" to pr		current cu	arrent (wi) 3	100 % (🔺 🔏 SM-F	Position se	nsor			
Ensure the child protection (max. window				100 % (• P	lausibilisa	tion SI	M_PoSe_0	1 90%	90%
Ensure ventilation	OM													• in	nternal self	-test SI	M_PoSe_0.	2 99%	99%
Ensure ventilation	QIM			100 % (QIM,									🔺 🔏 SM-F	ower sup	oly			
														• P	ower test	SI	M_SpVe_0.	1 99%	90%
					•									•		111			
	💤 *W	indow Lifter	×																- 0
	0		_					1											
	Ove	erall syste	em *												Filter: AI		•	II 🔤 🚼 🚽	* 🗉 🖬
	BOM	: DEMO_EN_E	BOM_Window	Lifter															
		Com	ponent	Failure N	lode	•							ping of limbs			₹	SR (SD)	Relevance (S	P) Diagnosis (
		Status	Name	Failure Mode	Split		P) Relevance (S	SP) Diagnosis (SP)				Relevance (N	1 Diagnosis (M.			CCF		increvance (5	r) Diagnosis (
	1	V Cross	- C001	Y		7	Y	Y	Y	7 7	7 7				7 7	7	×		=
	1	Open	- 001		20%		1000/		09/	0	- v -	100%		0%	40			100%	
	1.1			✓ opens			100%		0%	0		100%				-0-1		100%	
	1.2			★ shorts	80%		100%		0%	0		100%		0%	160			100%	
		Open	-002		100/	×	100%	CM D-C- 02	000/	0	- v -	100%	CM DeCe 02	0.09/	0.01	~	×	100%	CM DeCe 0
	2.1			 ✓ opens ✓ shorts 	10% 70%	x		SM_PoSe_02	99% 99%	0	×	100% 100%	SM_PoSe_02	99%	0.01		x	100%	SM_PoSe_0
	2.2			✓ shorts	20%		100%	SM_PoSe_02 SM_PoSe_01	99%	0	x	100%	SM_PoSe_02 SM_PoSe_01	99%	0.07	- 2 -	$-\hat{\cdot}$	100%	SM_PoSe_0
	2.3	Open		≁ ann	20%		100%	SIM_POSe_01	90%	0	^	100%	SIM_POSe_01	90%	0.2		<u> </u>	100%	SIVI_POSe_0
	3.1	🖻 Open	- 003	# an and	10%	×	100%	SM_PoSe_02	99%	0		100%	SM PoSe 02	99%	0.01		×	100%	CM DeCe 0
				✓ opens		x				-	x						x		SM_PoSe_0
	3.2			✓ shorts	70%	-		SM_PoSe_02	99%	0	x	100%	SM_PoSe_02	99%	0.07	-0	-	100%	SM_PoSe_0
	3.3		- 004	オ drift	20%		100%	SM_PoSe_01	90%	0	^	100%	SM_PoSe_01	90%	0.2	~		100%	SM_PoSe_0
		Open	C004		100/	×	10000	Chi Calia St	0001	0	×	100%	Chi Calla Ci	0.00%	0.1		×	1000/	Cha Calla C
	4.1			🛪 opens	10%	~	100%	SM_SpVe_01	99%	0	~	100%	SM_SpVe_01	90%	0.1			100%	SM_SpVe_0
			4 WindowLift	er 📊 DEMO EN F		low lifter											_		F
						JowLinter	~			_									
Software							C-S	OX											

FMEDA: Modules

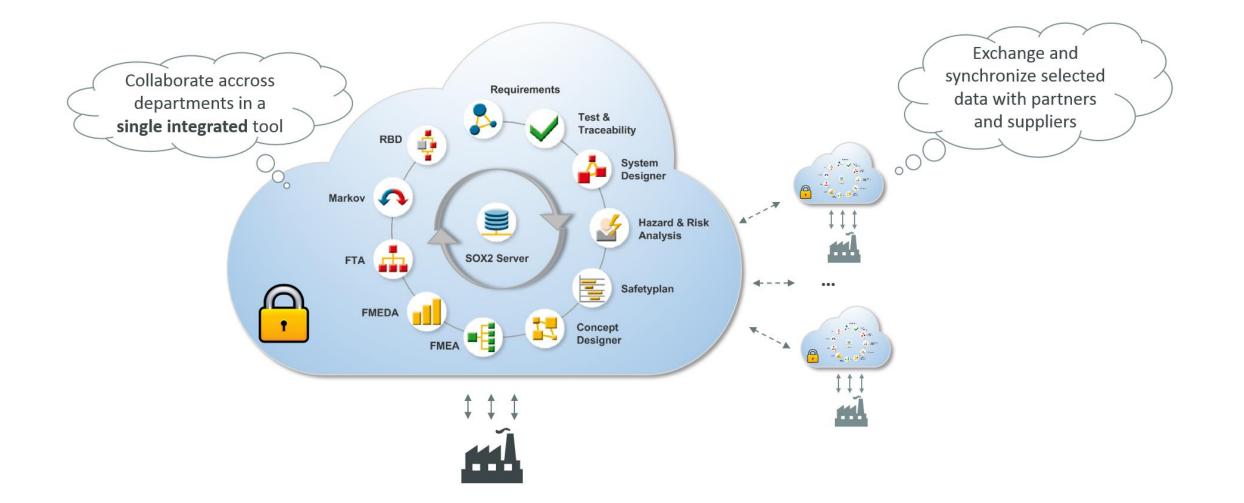

- Assign components to modules
- A module corresponds to a system element from system design

FTA: Derive FTA from FMEA


• An FTA can be automatically derived from the FMEA

FTA: Finalize FTA

• Create base events, select failure models and calculate minimal cut sets and probabilities



Project C-SOX

Project C-SOX: SOX2 in the Cloud

Goals

- Multi-user collaboration based on a cloud server
- Cloud server: private cloud (hosted by customers)
 - Might be extended later on by public cloud server to provide easier access e.g., for academic use
- Support for very large models
- Web-based User Interface accessible via web browser
 - Still provide option to run HTML-based UIs in Eclipse RCP applications

- Requires: Framework for graphical modelling (UML, SysML) supporting HTML-based UIs
- Collaboration with CEA

Research Programme SME Instruments

 \bigcirc

- EU funding scheme for small- and medium sized enterprises (SMEs)
- Purpose: Boost single SMEs to bring innovations to market
- Very market-oriented, no research
- Phase 1: Feasibility study (optional)
 - Analysis of technical and commercial feasibility
 - Detailed planning for phase 2 (Business Plan)
 - Duration: 6 months
 - Funding: Fixed amount (50.000 Euro)
- Phase 2: Innovation project
 - Commercialize project
 - Duration: Typically 2 years
 - Funding: Up to 2.5 Mio Euro EU contribution
- Phase 3: Commercialization
 - Commercial exploitation

Current Status

HORIZON 2020	 [PROJECT] SOX2-Cloud - Integrated Safety Engineering Platform for electrical and electronic systems for transportation ID: 743519 Start date: 2016-11-01, End date: 2017-04-30 Electrical and electronic systems (Electrical/Electronic/Programmable Electronic Safety-related Systems – E/E/PE) play an important role in our lives and take over important decisions and safety-related functions. Accidents and hazards may arise due to technical defects in Programme: H2020-EU.3.4. Record Number: 207103 Last updated on: 2016-11-29 	
	Last updated on: 2010-11-29	

- In Phase 1
- Report on Phase 1 to submit end of April
- Proposal for Phase 2 to submit beginning of June
- Supported by consulting company with strong success rate in this programme (EuraConsult)

Intended Project on "Cloud-based Graphical Modelling"

- Eclipse OSS project
- Four intended building blocks of contributions:
 - 1. Contributions from EnCo
 - 2. Allocate funding to CEA to contribute
 - 3. Contributions from other interested partners, e.g., from Polarsys IC
 - 4. OSS community
- Additional partners wanted
- LOI by interested parties (e.g., Polarsys IC) would help to secure funding

Contact

EnCo Software GmbH

Balanstr. 55 81541 München Germany

 Phone:
 +49 (89) 716 775 890

 Fax:
 +49 (89) 716 775 899

 Email:
 info@enco-software.com

 www.enco-software.com